The Roles of Entropy and Kinetics in Structure Prediction
نویسندگان
چکیده
BACKGROUND Here we continue our efforts to use methods developed in the folding mechanism community to both better understand and improve structure prediction. Our previous work demonstrated that Rosetta's coarse-grained potentials may actually impede accurate structure prediction at full-atom resolution. Based on this work we postulated that it may be time to work completely at full-atom resolution but that doing so may require more careful attention to the kinetics of convergence. METHODOLOGY/PRINCIPAL FINDINGS To explore the possibility of working entirely at full-atom resolution, we apply enhanced sampling algorithms and the free energy theory developed in the folding mechanism community to full-atom protein structure prediction with the prominent Rosetta package. We find that Rosetta's full-atom scoring function is indeed able to recognize diverse protein native states and that there is a strong correlation between score and Calpha RMSD to the native state. However, we also show that there is a huge entropic barrier to folding under this potential and the kinetics of folding are extremely slow. We then exploit this new understanding to suggest ways to improve structure prediction. CONCLUSIONS/SIGNIFICANCE Based on this work we hypothesize that structure prediction may be improved by taking a more physical approach, i.e. considering the nature of the model thermodynamics and kinetics which result from structure prediction simulations.
منابع مشابه
Investigation of the Slipping Wear based on the Rate of Entropy Generation
Wear is a complicated phenomenon caused by the relative movement of two contacting surfaces compressed together by a normal force. Prediction of the wear, in most cases, requires various experiments and microstructural characterization of the contacting surfaces. Mathematical models based on physical concepts could provide considerable help in understanding the physical behavior and hence the p...
متن کاملInvestigation of the Slipping Wear based on the Rate of Entropy Generation
Wear is a complicated phenomenon caused by the relative movement of two contacting surfaces compressed together by a normal force. Prediction of the wear, in most cases, requires various experiments and microstructural characterization of the contacting surfaces. Mathematical models based on physical concepts could provide considerable help in understanding the physical behavior and hence the p...
متن کاملSPECTROPHOTOMETRIC STUDY OF THE THERMODYNAMICS AND KINETICS OF CHARGE-TRANSFER COMPLEXATION OF DIBENZO- 18-CROWN-6 WITH IODINE IN CHLOROFORM SOLUTION
The charge-transfer complexation reaction between iodine and dibenzo- 18-crown- 6 (DB18C6) has been studied spectrophotometrically in chloroform solution at different temperatures. The resulting donor-acceptor complex was formulated as (DB 18C6…I )I . The spectrophotometric results , as well as the conductivity measurements, indicated that the gradual release of tiiodide ion from its contac...
متن کاملThermodynamics and Kinetics of Vaporization of Pbs From Complex Cu-Fe Mattes
Thermodynamics and kinetics of vaporization of lead sulfide from typical copper-smelting mattes of commercial interest are investigated in the temperature range 1388 K to 1573 K by vapor transport technique and plasma arc spectroscopy. The total mass of the dominant vaporizing species PbS that leaves the matte is described by the Newman's numerical solution to the second Fick's law combined wit...
متن کاملSize-dependent Kinetics Determination of MoS2-K2O/CNTS Nanocatalyst in the Synthesis of Alcohols from Syngas
The influence of Mo particle size on the catalytic activity and product selectivity of alkalized MoS2 nanocatalysts has been investigated. Nanocatalysts are prepared using a microemulsion technique with water-to-surfactant ratios of 1-12. Three different techniques, including XRD, TEM, and hydrogen chemisorption were used to determine the molybdenum average particle size and their activity and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 4 شماره
صفحات -
تاریخ انتشار 2009